

Capturing and Analyzing Bragg Peak Proton Range Data on the Mevion HyperScan

using the XRV-3000 Eagle and LCW-300 multi-chevron wedge

XRV-3000 Eagle Setup

Tallest LCW-300 chevron should be located at the rear of the Eagle facing the handle

The LCW is centered on the target and the Eagle is aligned so the lasers hit the chevron peaks.

Mevion LCW-300 Delivery Plan

> 190 MeV, 9x12 - 15mm pitch

The grid pattern for each energy layer approximates a flat field

Dose for each spot is ~0.2 MU

There should be no beam activity in the capture ROI for ~1 second so the Logos software can detect the change in beam energy

The standard spreadsheet analysis template allows for 35 energy levels

Mevion LCW-300 Delivery Plan

< 165 MeV, 6x8 - 25mm pitch

165 – 190 MeV, 7x9 - 20mm pitch

> 190 MeV, 9x12 - 15mm pitch

Each energy layer is captured as a proton radiograph allowing 2 peak-to-peak measurements

The pristine Bragg Peaks are "quenched" in the scintillator causing the peak-to-peak measurements to be skewed in the proximal direction.

It has been experimentally observed that acrylic and Teflon LCW measurements when adjusted for the WET, correspond closely to the proximal 80% range of protons in water.

Setting up BeamWorks Strata

Launch BeamWorks Strata

		Beam	Works S	trata	
Ready for new beam capture	every Robol Trend Ana	per MDC/PES Trend.	Analysis Script Control 5	elrg:	
Expluse Script Style General Beancenter (Au Capture Images to Week Process Images from Week Real-Time Memory Expl Capture Peak Image (M Capture Peak Image (M) Capture Piak Image (M)	Atomatic) ang Data orking Data Cla anual Proceediate Sec.	ar Working Data		All values in mile × 0.01 Y. 00 Bodesire Distance 1 Dist	refere n arroe 1.2
Capture Notes:	rivership oge_res_	Lew nege sen			
Start Script	Bearn: 0	Pass 0	Blank: 0		
Script Step: (Stopp	ped) Elapsed	Time: 0 sec.			

Select "Custom Scripts"

Capture Script Style:

-) Generate Beamcenter (Automatic)
-) Capture Images to Working Data
-) Process Images from Working Data
- Real-Time Memory Capture
- Capture Peak Image [Manual]
- Custom Scripts

Select "Browse"

Setting up BeamWorks Strata

Load BraggPeakCaptureEagle script

🗄 Open								×						
🕂 🕂 🛉 This	PC + Local Disk (C0 + BeamWorks3000Eogle	¥		~ 0	Search Beam	Wineks3000Ea	de p							
Organize + New folder						(iii • 1								
Music Temp Wideos This PC 3D Objects Documents Documents Documents Music Pictures Videos Local Disk (C0) QATA (D) public2 (\/cadon	Name FullCaptureCalibrationImagePlus FullCaptureCalibrationImagePlus FagleLensCorrectionSitmapsandTentEagle CapturePeakMult/SpotEagle CapturePeak_OptionTClear_Option2Save CaptureOnlyEagle CaptureOnlyEagle CaptureAverage_OptionTClear_Option2Save CaptureAverage_OptionTClear_Option2Save CaptureAverage_OptionTClear_Option2Save CaptureAverage_OptionTClear_Option2Save CaptureAverage_OptionTClear_Option2Save CaptureAverage_OptionTClear_Option2Save CaptureAverage_OptionTClear_Option2Save CaptureCalibrationImagePlus CaptureCalibrationImagePlus Capta_0316_0003 Cottl_0316_0001 Cottl_0316_0001 Cottl_0312_0028	Date modified 2/26/2018 6:27 PM 2/26/2018 6:27 PM 2/26/2018 6:27 PM 2/26/2018 6:21 PM 2/26/2018 6:21 PM 2/26/2018 6:21 PM 2/26/2018 6:20 PM 2/26/2018 6:12 PM 2/26/2018 6:49 PM 2/26/2018 5:40 PM 3/16/2018 1:245 PM 3/16/2018 1:245 PM 3/16/2018 1:245 PM 3/16/2018 1:245 PM	Type Screen saver Screen saver Screen saver Screen saver Screen saver Screen saver Screen saver Screen saver Screen saver File folder File folder File folder	See 1	7 KB 7 KB 7 KB 7 KB 7 KB 7 KB 7 KB 7 KB					Se	elec	t "C)pe	n"
Flenar	mti BraggPeakCaptureEagle			-	Scripts		Ŷ						•	
_					Open		ncel							

Setting up BeamWorks Strata

🖽 BeamWork:Szata 1.4	- n ×
BA Plan Capture GA Plan Review Robot Trend Analysis NLCA	eamWorks Strata
Update All Scripts with Calibration Parameters Enable Horizontal Scaling (pixels/inn): 3.6563 Vertical Scaling (pixels/inn): 3.6486 Display/Center: % 600.9555 % 600.955 %	New WinCVS Wideo Parameters
New Output Data Folder Erable Bitance C/FalcontEbitData	8 Bits (BMP extension) 16 Bits (TIF extension)
Press F1 for Help	Copyright © 2017 Logos Systems Int

Set the Eagle camera Frame Rate to 2 frames per second and the Gain to 24 dB

Making Measurements

Click on Start Script to launch WinLVS

14 Plan Capture QA Plan Review	Bea	ImWorks	Strata
Ready for new beam capture service			
Capture Script Style: General Beamcenter (Automatic Capture Insigns to Working Dat Process Images from Working D O Real-Time Memory Capture Capture Peak Image (Manual) Custom Scripts	ala ClearWokingDate		All values in nillimeters X: 0.01 Y: 0.01 Bodefine Distance 1 Distance 1.2
C \SeamWorks3000E agle\SraggP Capiture Notes:	ak Capture Eagle ser		Browse
Start Script Starts the elected be Script Step: (Stopped)	eam: 0 Pass: 0 em-capture script.) Elapsed Time: 0 sec	Blank: 0	
Option 1 Opti	on 2 Option 3	Option 4	
err F1 for Help	100 - 17		Conscient 9 2017 Los

Making Measurements

WinLVS captures images and saves measurements to disk

Tap spacebar to add information windows

Deliver plan

Construction of the construction of the second of the seco

Click "Option 1"

		<u>.</u>			
A Plan Caphire GA Plan R Waking on next beam mage	eview Robol Tree	nd Andersia MLC/PES	Trend Analysis Script Con	arol Seitings	
Capture Script Style General Beancemer (# Capture Images to Wor Process Images from V Real Tane Memory Cap Capture Peek Image (# Capture Scripts	udomatic) Anng Data Anna Kanuali	Clear Working Data		Ad X 0.01 Beckerine Distance	Values in millimeters Y 0.01 Noncompliant Distance: 1.2
C 1BeanWorks3000Eagle Capture Notes:	19 apidCyptureProc	en£ageLayer.co			Brow
Stop Script	Beam 2	Pass 0	Blank: 17		
Script Step: 22	Ela	psed Time: 164 s	50C.		

Making Measurements

WintUS-1097-3002Eagle BeamWorks - StocLevel 4 of 156 File Edit Script XRV-100/124 XRV-2000/9000/4000 Read Video Image Options Help

Pressing the Option 1 button starts the process of detecting Bragg Peak regions in the captured images and writing peak-to-peak measurements to file in a CSV format that can be easily imported into the template spreadsheet for analysis.

Data is then pasted into the analysis spreadsheet in order to calculate the equivalent proton range in water

	Α	В	С	D	E	F	G	Н	1	J	K
10		Folder 0008						Layer Ener	gy (MeV):	170.9	Snout Adj
11	1	LCW-200/300	R	Center	Peak-to-Pe	eak	Chevron H	eight	Target	Scint. Cove	Wedge
12	Image:	4		Dist (mm)	Dist (mm)		(mm)		(mm)	(mm)	WET
13	Chevron:	А		0	0		170.2		3.4	1.8	1.821
14	Chevron:	^в Peak-	to-pea	ak width	0		150		3.4	1.8	1.821
15	Chevron:	С	•	-12.462	62.3974		130		3.4	1.8	1.821
16	Chevron:	D		14.1868	16.9677		110.1		3.4	1.8	1.821
17	Chevron:	E		0	0		90.1		3.4	1.8	1.821
18	Chevron:	F		0	0		70.2		3.4	1.8	1.821
19											
20		Folder 0006				Delta (Me)	0	Layer Ener	gy (MeV):	170.9	Snout Adj
21	2	LCW-200/300		Center	Peak-to-Pe	eak	Chevron H	eight	Target	Scint. Cove	Wedge
22	Image:	1		Dist (mm)	Dist (mm)		(mm)		(mm)	(mm)	WET
23	Chevron:	А		0	0		170.2		3.4	1.8	1.821
24	Chevron:	В		0	0		150		3.4	1.8	1.821
25	Chevron:	С		-11.9351	60.4817)	130		3.4	1.8	1.821
26	Chevron:	D		13.7981	16.9677		110.1		3.4	1.8	1.821
27	Chevron:	E		0	0		90.1		3.4	1.8	1.821
28	Chevron:	F		0	0		70.2		3.4	1.8	1.821
29											
30		Folder 0008				Delta (Me)	10.5	Layer Ener	gy (MeV):	160.4	Snout Adj
31	3	LCW-200/300		Center	Peak-to-Pe	eak	Chevron H	eight	Target	Scint. Cove	Wedge
32	Image:	3		Dist (mm)	Dist (mm)		(mm)		(mm)	(mm)	WET
33	Chevron:	А		0	0		170.2		3.4	1.8	1.821
34	Chevron:	В		0	0		150		3.4	1.8	1.821
35	Chevron:	С		-11.2606	82.3755		130		3.4	1.8	1.821
36	Chevron:	D		14.9266	40.5036		110.1		3.4	1.8	1.821
37	Chevron:	E		0	0		90.1		3.4	1.8	1.821
38	Chevron:	F		0	0		70.2		3.4	1.8	1.821

Delivery plan MeV values for each energy layer are entered into the spreadsheet

Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK	AL
									LCW-300 (Chevron Da	ata Summary	1
						Plan						
						Layer	Post Snou	t				
(SAD Y)	(SAD X)					Energy	Energy		Chevron		Avg. Energy	
cos(T)	cos(P)		Defined Energies		Layer	(MeV)	(MeV)	Delta	BPD (mm)	Delta	BPD (mm)	Delta
			170.9		1	170.9	167.8		189.8891		190.88674	
			170.9		2	170.9	167.8	0	190.728	0.8389	190.88674	0
0.999869	0.999977		160.4		3	160.4	157.3	-10.5	170.7299	-19.998	170.47672	-20.41
0.99999	0.999971		160.4		4	160.4	157.3	0	170.4918	-0.23816	170.47672	0
			150.5		5	150.5	147.4	-9.9	152.7851	-17.7067	152.14596	-18.3308
			140.1		6	140.1	137	-10.4	134.0345	-18.7506	133.86	-18.286
									Average	-11.1709		
									Std. Dev.	10.51008		
cos(T)	cos(P)											

Parameters for WET (Water Equivalent Thickness) entered into the spreadsheet: 1.821 for Teflon (LCW-300 Chevrons) 1.172 for Acrylic (Eagle support Target)

К	L	М	N	0	Р	Q	R	S
		Global Inp	out Values					
		XRV-3000	SAD X mm:	1850				
		XRV-3000	SAD Y mm:	1850				
		Snout Adj	. MeV:	3.1				
		Nominal V	Vedge WET:	1.821				
)0 Chevrons	C and D.	Nominal T	ARGET WET	1.172				

proximately 20 mm more air to reach each lower Chevron.

Snout Adj	3.1	Final MeV	167.8	Bragg Dep	th (mm):	PSI Equati	on for Prox	imal 80% F
Wedge	PMMA	Trap. Scali	ng	Bragg Pen	etration		Adjusted E	BPD
WET	WET	with SAD >	<	Depth in n	nm		(mm)	
1.821	1.172	0.939081						
1.821	1.172	0.95						
1.821	1.172	0.960811		188.238			188.209	
1.821	1.172	0.971568		191.5767			191.5691	
1.821	1.172	0.982378						
1.821	1.172	0.993135						

Optimization of WET values with the "Hill Climbing" method

Excellent agreement between Mevion and Varian energy layers

Two different LCW units, Two different XRV phantoms, Two different proton delivery systems, Two different facilities. Excellent agreement!

Calculation for depth of 80% energy loss of beam in water converts MeV (black) to millimeters (red)

М	N	0	Р	Q	R	S	Т	U	V	W
Global Inp	ut Values									
XRV-3000	SAD X mm:	1850						The plan l	ies were de	
XRV-3000	SAD Y mm:	1850						The delive	ry was a gr	rid pattern
Snout Adj.	MeV:	3.1						The PSI R8	<mark>0 depth ec</mark>	uation cor
Nominal V	Vedge WET:	1.821						Proximal e	dge R80 is	used beca
Nominal T	ARGET WET	1.172								
		Ch		PSI	Fouatio	n 🥆				
re air to rea	ach each lower	Cnevron.			Lquutt					
Final MeV	167.8	Bragg Dept	th (mm):	PSI Equat	ion for Prox	kimal 80%	Penetratio	n Depth:	190.8867	
Trap. Scali	ng	Bragg Pene	etration		Adjusted I	3PD			\smile	
with SAD >	(Depth in m	ım		(mm)					Y (mm)
0.939081										0
0.95										0
0.960811		188.238			188.209					29.97605
0.971568		191.5767			191.5691					8.242634
0.982378										0
0.993135										0
	Average	189.9073		Average	189.8891					
<mark>Final MeV</mark>	167.8	Bragg Dept	th (mm):	PSI Equat	ion for Prox	kimal 80%	Penetratio	n Depth:	190.8867	
Trap. Scali	ng	Bragg Pene	etration		Adjusted I	BPD				
with SAD >	<	Depth in m	ım		(mm)					Y (mm)
0.939081										0
0.95										0
0.960811		189.9139			189.8865					29.05574
0.971568		191.5767			191.5694					8.242634
0.982378										0
0.993135										0

Proximal depth 80% of Bragg Peak formula (PSI): $D = 0.0244E^{1.75}$

М	N	0	Р	Q	R	S	Т	U	V	W
Global Inp	out Values									
XRV-3000	SAD X mm:	1850						The plan l	ayer energ	ies were de
XRV-3000	SAD Y mm:	1850						The delive	rid pattern	
Snout Adj.	nout Adj. MeV: 3.1							The PSI R8	80 depth eo	uation cor
Nominal V	Vedge WET:	1.821						Proximal e	edge R80 is	used beca
Nominal T	ARGET WET	1.172								
re air to rea	ach each <mark>l</mark> ower (Chevron.		→ PSI	Equatio	on 🔶				
									\frown	
Final MeV	167.8	Bragg Dep	th (mm):	PSI Equat	ion for Prox	imal 80% F	<mark>enetratio</mark>	n Depth: 🌔	190.8867	
Trap. Scali	ing	Bragg Pene	etration		Adjusted E	SPD				
with SAD >	X	Depth in n	nm		(mm)					Y (mm)
0.939081										0
0.95										0
0.960811		188.238			188.209					29.97605
0.971568		191.5767			191.5691					8.242634
0.982378										0
0.993135	•	400.0070		•	100.0001					0
	Average	189.9073	th. (Average	189.8891				100 0007	
Tran Seal	107.8	Bragg Dep	th (mm):	PSI Equat			enetration	n Deptn:	190.8867	
with SAD Y	v	Donth in n			Aujusteu E	DPD				V (mm)
0 030081		Deptirini			(11111)					0
0.555001										0
0.960811		189 9139			189 8865					29 05574
0.971568		191,5767			191,5694					8,242634
0.982378		19119707			10110004					0
0.993135										0
										-

Calculate proton range in water from the LCW measurements using WET and other corrections

WET*[(Scaling ratio)*(Peak to peak)/2)+(Target thickness)]

М	N	0	Р	Q	R	S	Т	U	V	W
Global Inp	ut Values									
XRV-3000	SAD X mm:	1850						The plan la	ayer energi	es were deli
XRV-3000	SAD Y mm:	1850						The delive	d pattern o	
Snout Adj.	MeV:	3.1						The PSI R8	0 depth eq	uation conv
Nominal V	Vedge WET:	1.821						Proximal e	dge R80 is	<mark>used becau</mark>
Nominal T	ARGET WET	1.172								
to reach e	ach lower Chevr	on.								
Final MeV	167.8	Bragg Dept	th (mm):	PSI Equati	<mark>on for Proxi</mark>	imal 80% P	enetration and a set a 	Depth:	190.887	
Trap. Scali	ng	Bragg Pene	etration		Adjusted B	PD				
with SAD	×.	Depth in m	nm		(mm)					Y (mm)
0.93908										0
0.95										0
0.96081		188.238		(188.209	>				29.976
0.97157		191.577			191.569					8.24263
0.98238										0
0.99314										0
	Average	189.907		Average	189.889					
Final MeV	167.8	Bragg Dep	th (mm):	PSI Equati	<mark>on for Proxi</mark>	imal 80% P	enetration	Depth:	190.887	
Trap. Scali	ng	Bragg Pene	etration		Adjusted B	PD				
with SAD 2	x	Depth in m	nm		(mm)					Y (mm)
0.93908										0
0.95										0
0.96081		189.914			189.887					29.0557
0.97157		191.577			191.569					8.24263
0.98238										0
0.99314										0
	Average	190.745		Average	190.728					

Comparing average measurement to equation gives a Δ for that energy layer

AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO
<mark>pristine po</mark>	<mark>s</mark> ition in wa	ter.								
				LCW-300 (Chevron Da	ta Summary				
	Plan									
	Layer	Post Snout	t							
	Energy	Energy		Chevron		Avg. Energy		Delta	(Absolute I	Delta
Layer	(MeV)	(MeV)	Delta	BPD (mm)	Delta	BPD (mm)	Delta	BPD (mm)	BPD mm)	
1	170.9	167.8		189.889		190.88674		0.99765	0.99765	
2	170.9	167.8	0	190.728	0.8389	190.88674	0	0.15875	0.15875	
3	160.4	157.3	-10.5	170.73	-19.998	170.47672	-20.41	-0.25322	0.25322	
4	160.4	157.3	0	170.492	-0.23816	170.47672	0	-0.01507	0.01507	
5	150.5	147.4	-9.9	152.785	-17.7067	152.14596	-18.3308	-0.63912	0.63912	
6	5 140.1	137	-10.4	134.034	-18.7506	133.86	-18.286	-0.17448	0.17448	
				Average	-11.1709			Average	0.37305	
				Std. Dev.	10.5101			Std. Dev.	0.37116	
								Max.	0.99765	
								Min.	0.01507	

Find the average Δ for all energy layers

AE	AF	AG	AH	AI	AJ	AK	AL	AM	AN	AO
oristine pos	ition in wa	ter.								
				LCW-300 (Chevron Da	ta Summary				
	Plan									
	Layer	Post Snout	Ĭ							
	Energy	Energy		Chevron		Avg. Energy		Delta	(Absolute I	Delta
Layer	(MeV)	(MeV)	Delta	BPD (mm)	Delta	BPD (mm)	Delta	BPD (mm)	BPD mm)	
1	170.9	167.8		189.889		190.88674		0.99765	0.99765	
2	170.9	167.8	0	190.728	0.8389	190.88674	0	0.15875	0.15875	
3	160.4	157.3	-10.5	170.73	-19.998	170.47672	-20.41	-0.25322	0.25322	
4	160.4	157.3	0	170.492	-0.23816	170.47672	0	-0.01507	0.01507	
5	150.5	147.4	-9.9	152.785	-17.7067	152.14596	-18.3308	-0.63912	0.63912	
6	140.1	137	-10.4	134.034	-18.7506	133.86	-18.286	-0.17448	0.17448	
				Average	-11.1709			Average	0.37305	>
				Std. Dev.	10.5101			Std. Dev.	0.37116	
								Max.	0.99765	
								Min.	0.01507	

An automated treatment plan allows fast analysis of 35 energy layers as a proton range constancy check with an accuracy of about 0.5 mm

D-C	LCW300ProtonBeamBraggPeakAnalysis_HPTC_FaedSnowtMeVDrep_	(021_2018 - Excel	Logos Laptops 🖬 — 🗗
e Honse Insert PageLayout Formulas Data Review View Help V Tellme wha	you want to do		H and
K Cut Calbri • 11 • A A = = - + & Wrap Text Generi	- Normal Bad	Good Neutral Calculation	E AutoSum · Ar D
B Copy *	Conditional Formatias Fund Tarl Evolutionation	Innut unked Cel Note hast Delete Forma	x
Format Painter	formatting Table -	· · · ·	Clear - Fiker - Select -
Cloboard & Fort & Algnment &	Jinber 14	Styles Cells	Editing
· · · · · · · · · · · · · · · · · · ·			
	The second s		
Nonmal Vedge VE1: 1821 Prosmal edge F	Oir uned because of the gueriched Bragg Peak at the scindlar or noves the peak program	n an	AP AU AP AS AT AU AT
dishles beween LCW-315 Clevere iNerval TARGET WET 1172			
ream savels fivough approximately 20 mm nove autoreach each lower Chevron		LCH-300 Cheven Data Sumary	
a Mail 30 Sources 2 E FoolNat 25 Base Dephinest PSEs and a Parameter Department 23		Pien Laws Part Source	
Taget Scel Co Vedge PHNA Trap Scaling BraggPenetration Adjusted BPD	ISADY) ISADX)	Erange Erange Chevion Ang Erange Data WoodwaData	
nan) (nan) VET VET vih SACIY Dephininan (nan)	Yine) SADX SADY cod?) DetredEnergec La 2000 2000	ayer (HeV) (HeV) Deta EPO(nn:Deta EPO(nn) Deta EPO(nn) 1 105 105 05 231.05 230.411 1553 1553	
34 18 1821 1172 0.9557 228.92 228.95	28 137 2000 2100 0.9999 0.9998 187.1	2 187.1 184 95 -19" 225.3 -3.55" 228 328 -4.085 10281 10281	
34 10 1021 1172 0.9053	0 2000 2000 905 2	3 105.2 103.05 -19 2214 -3.901 222.273 -4.053 0.0759 0.0759	
34 18 1821 11/2 0.9/49	200 210 1014	4 183.3 18115 -19 217.26 -4 196 218.251 -4.022 0.9504 0.9504 5 1814 173.25 -19 213.40 -3.701 218.261 -3.20 0.7611 0.7611	
34 18 1821 1172 0.994	2000 2100 179.5	6 1795 177 35 -19" 2096 -3 882" 210 302 -3.959 0 7044 0 7044	
Average 220.52 Average 220.65 million Well 197.1 Store 64 2.15 English 194.95 Ream Dank (mp.) PSIEs as the Demond 97% Person area Dank 226	175	7 1775 175 35 -2 205 50 -4016 206 17 -4 33 0 5616 0 5616 8 1756 173 45 -19 201 57 -4017 202 276 -3.8% 0.7H 0.7H	
Target Sciel Co Vedge PNIKA Trap Scaling BioggPenetration Adjusted BPD	173.5	5 1736 17145 -2" 19767 -3 897" 28 212 -4 064 05443 05443	
nni Inni VET WEF vihS40Y Dephininin (nni)	Yirel SADX SADY costTl costP) 1716	10 1716 163 45 -2 194 32 -3 348 194 194 -4 029 -0 136 0 1362	
34 10 1021 1172 0.9557 224.45 224.38	30 589 2000 2100 0.33 0.3358 %7.5	12 167.6 165.45 -2" 196.09 -4.253" 166.233 -3.967 0.1475 0.1475	
34 16 1821 1172 0.9653 226.22 228.22	95%2 2000 2100 1 1 165.6	13 1656 16345 -2" 18215 -3.938" 182311 -3.522 0.164 0.164	
34 10 1021 1172 0.0749	2000 2000 \$63.5	M 1635 16135 -21' 17621 -3333' 170232 -4.073 0.0233 0.0233 5 1615 16936 -3' 13422 -3938' 174394 -3848 0.026 0.028	
34 10 1021 1172 0394	2000 2000 0005	16 153 157 75 -16" 171 29 -2 203" TT 331 -3 053 0.043 0.043	The second s
Average 22534 Average 2253 Well WE2 Security 21 Reality W3/R Read Fund (and 1997) Read with Data and 2007 Read of the Control of 2007	583	17 1583 15615 -16 16807 -3223 168302 -3029 02363 02363	
Taget Sone Co Vedge PHMA Trap Scaling BreggPenetation Adjusted BPD	\$51	19 1551 15295 -16 16198 -0.461 162312 -2.963 0.3339 0.3339	
nni (nni 461 WEI withSADY Deptining (nni)	Yime) SADX SADY cod (codP) 835	20 835 8135 -16 8338 -2 634 83363 -2 56 -0.001 0.0076	
34 16 1821 11/2 0.9557 220.93 230.85	200 210 519 32 525 2000 2100 0 5 69 0 3569 550 5	22 1503 14515 -16 15/16 -2154 156416 -2336 -0144 01434	
34 10 1021 1172 0.9653 22195 22194	11.863 2000 2100 1 1 W8.1	23 MB1 M5 95 -22" 190 05 -3 977" M3 536 -3 967 -0.5M 0.5M5	
34 18 1821 1172 0.949	2000 2000 962	24 N52 N405 -15 N596 -3495 N6 N6 -339 -0.41 0.41	
34 18 1821 1172 0.994	2000 2100 1414	26 1414 179.25 -2.2" 138 -3.655" 137.731 -3.631 -0.271 0.271	
Menage 22144 Average 2214	101	27 1001 106 35 -2 3 104 00 -3 577 103 175 -3 566 -0 751 0 2500	
Tager Sone Co Vedge PHNA Trap Bragg Dependence Policyaechior Toerraid Co. Penderador Depr. 200	244	25 1345 13455 -24 125 31 -3 856 13 564 -4 024 -0 47 0 4701	
mel level VET VET Scaling Deptember (mel	Yimei SADX SADY cos(1) cos(2) 321	30 132.1 129.95 -2.3' 122.86 -3.455' 122.039 -3.805 -0.82 0.8204	
34 18 1821 1172 0561	34 749 2000 2100 0 9999 0 999 0 97 2	31 1257 12755 -24 11501 -3051 11612 -3517 -0.556 0.8564 32 1272 12505 -25 11439 -4014 1141 -4022 -0.894 0.8941	
34 18 1821 1172 0.9653 21768 21767	W209 2000 2100 1 124.8	33 1248 12265 -24 11086 -415 10296 -3806 -0564 05637	
34 10 1021 1172 0 9749	2000 2100 122.3	34 122.3 120 15 -2.5 106 97 -3 692 106 391 -3 304 -0.576 0.5761	
34 10 1021 1172 0.094	2000 200	-74400 search 000- 000- search	
Average 217.3 Average 217.26		Sed Dev. 0.2254 Sed Dev. 0.3514	
Target Sont Co Vedge PHMA Trap Scaling Bragg Penetation Adjusted BPD		Han 1503	
nel hel VET VET VINSADY Dephoto (on)	YITE SADX SADY codl (codP)		
34 18 1821 11/2 0.961 34 16 1821 11/2 0.9557 213.17 213.09	2000 2100 2100 2100 0 2258 0 2258	Total Depth: 34 822 mm. Average Laver Deptil 3,647 mm	
3.4 18 1821 1172 0.9653 213.88 213.87	16.295 2000 2100 1 1		
34 18 1821 11/2 0.5/49	2000 2100		
34 18 1827 1172 0.394	2000 2000		
Average 20353 Average 20348		the second program of the second program of the second program the rest of the	
· XYTemplateData1 ⊕		•	

Digital Real-Time X-ray and Proton Beam Metrology Solutions

www.logosvisionsystem.com