A Beam-Level Delivery Accuracy Study of the Robotic Image Guided Radiosurgery System Using a Scintillator/CCD Phantom

Lei Wang<sup>1</sup>, Shi Liu<sup>1</sup>, Brett Nelson<sup>2</sup>

Department of Radiation Oncology, Stanford University Medical School
Logos Systems Int'I, Scotts Valley, CA



### Traditional Targeting Accuracy Test on CyberKnife



End to End test with an anthropomorphic head phantom:

- Good for overall targeting accuracy.
- Provides quantitative delivery accuracy.
- Limitation No beam-by-beam level assessment.
- Limitation Film-based-> cost and time consuming.

Beam level BB test (TG135):

- A visual test observing the beam laser shine on a small target, simple to perform
- Laser is required to be well aligned
- Limitation Accuracy ~1.5mm

## XRV-124 System Logos Systems Int'l, Scotts Valley, CA





- The XRV-124 phantom is composed of an imaging cone laminated with an x-ray scintillator phosphor, coupled with a sensitive CCD digital camera.
- Radiation beams passing through the XRV-124 scintillator cone create two spots of visible light->used to calculate the beam position and direction.
- Measurement accuracy : 0.2mm



To assess the beam-level targeting accuracy of the robotic system using a scintillator/CCD phantom (XRV-124, Logos Systems Int'I, Scotts Valley, CA).

## Material and Method: Treatment Planning

- 1. XRV124 phantom was scanned at 0.6 mm slice thickness.
- Isocentric plans were created(Multiplan v5.3) targeting to the center of the cone.
- Small field sizes were used: 7.5 mm diameter for Fixed Cone and Iris, 7.6mm x 7.7mm for MLC.
- 4. An extra fiducial was inserted on central rod to ensure tracking centroid is close to target.
- 5. Full path beams (up to116 beams), 20 MU per beam.





### Material and Method: Treatment Delivery



A. The treatment was delivered on CyberKnife M6 system.B. The XRV-124 CCD camera recorded the integrated image.



- Measurement coordinate and treatment coordinate is aligned through embedded fiducials in phantom.
- The captured beam positions and directions are compared with the planned parameters from CyberKnife XML file.
- The delivery accuracy is defined as the 3D distance between the planned and the measured actual position.

# **Targeting Accuracy** ( $\Delta R$ is the total targeting error: $\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}$ )

|               | mean ΔR | σ(ΔR) | Max ∆R | mean Δθ | <b>σ(Δθ)</b> | mean Δφ | σ(Δφ) | Phantom Positioning        |
|---------------|---------|-------|--------|---------|--------------|---------|-------|----------------------------|
| Fixed Cone #1 | 0.429   | 0.219 | 1.261  | -0.205  | 0.051        | 0.000   | 0.192 |                            |
| Fixed Cone #2 | 0.402   | 0.200 | 1.171  | -0.019  | 0.033        | -0.002  | 0.129 | Repositioned               |
| Fixed Cone #3 | 0.353   | 0.210 | 1.19   | -0.205  | 0.049        | -0.008  | 0.191 | Repositioned collimator    |
| Fixed Cone #4 | 0.362   | 0.209 | 1.095  | -0.132  | 0.048        | -0.047  | 0.183 | Extra shifts and rotations |
| Average       | 0.387   | 0.210 | 1.261  | -0.140  | 0.045        | -0.014  | 0.174 |                            |
| Iris #1       | 0.316   | 0.145 | 0.794  | -0.113  | 0.043        | -0.004  | 0.128 |                            |
| Iris#2        | 0.299   | 0.158 | 0.803  | -0.408  | -0.053       | -0.053  | 0.126 | Repositioned               |
| Iris#3        | 0.309   | 0.137 | 0.726  | -0.287  | 0.057        | 0.043   | 0.2   | Extra shifts and rotations |
| Average       | 0.308   | 0.147 | 0.803  | -0.269  | 0.016        | -0.005  | 0.151 |                            |
| _             |         |       |        |         |              |         |       |                            |
| MLC#1         | 0.411   | 0.186 | 0.903  | -0.163  | 0.054        | -0.035  | 0.165 |                            |
| MLC#2         | 0.417   | 0.2   | 1.041  | -0.239  | 0.068        | -0.033  | 0.208 | Repositioned               |
| MLC#3         | 0.415   | 0.179 | 0.817  | -0.269  | 0.079        | 0.014   | 0.235 | Extra shifts and rotations |
| Average       | 0.414   | 0.188 | 1.041  | -0.224  | 0.081        | -0.018  | 0.205 |                            |

- Average total targeting error < 0.5 mm
- Max total targeting error < 1.3 mm. Worst case in fixed cone: 3 out of 116 beams are > 1mm.
- Average angular error <0.3 degree
- No significant differences were found with reposition and extra residue shifts and rotations in deliveries.

#### Stanford University

# Delivery/Measurement Precision: Targeting Deviation from Mean for Fixed Cone



9

# Targeting Accuracy vs. Beam Angle (Fixed Cone data displayed)



Slight angular dependency in targeting accuracy was observed in  $\phi$  direction. We are not certain if this is due to the measurement uncertainty or machine delivery uncertainty. Further investigation will be conducted. Stanford University

# Conclusion

- This study verified sub-millimeter delivery accuracy of CyberKnife system at beam-level for the entire body path nodes with three available collimators.
- The XRV-124 phantom was proved to be a valuable systematic delivery QA tool for the robotic targeting accuracy.
- This check is not dependent on central laser alignment. It provides ~0.2mm measurement accuracy with instantaneous results.

## Conclusion

Limitation:

- This phantom only provides fiducial tracking, therefore it will not replace the anthropomorphic head phantom.
- It should be able to verify majority of the brain path nodes, but not the nodes from superior angle.

## Thank you!

Stanford University